New Thoughts on the Vector-valued Mihlin–hörmander Multiplier Theorem

نویسندگان

  • TUOMAS P. HYTÖNEN
  • T. P. HYTÖNEN
چکیده

Abstract. Let X be a UMD space with type t and cotype q, and let Tm be a Fourier multiplier operator with a scalar-valued symbol m. If |∂m(ξ)| . |ξ|−|α| for all |α| ≤ ⌊n/max(t, q′)⌋ + 1, then Tm is bounded on L(R;X) for all p ∈ (1,∞). For scalar-valued multipliers, this improves the theorem of Girardi and Weis (J. Funct. Anal., 2003) who required similar assumptions for derivatives up to the order ⌊n/r⌋ + 1, where r ≤ min(t, q′) is a Fouriertype of X. However, the present method does not apply to operator-valued multipliers, which are also covered by the Girardi–Weis theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hörmander Multiplier Theorem for Multilinear Operators

In this paper, we provide a version of the Mihlin-Hörmander multiplier theorem for multilinear operators in the case where the target space is L for p ≤ 1. This extends a recent result of Tomita [15] who proved an analogous result for p > 1.

متن کامل

Operator Valued Series and Vector Valued Multiplier Spaces

‎Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous‎ ‎linear operators from $X$ into $Y$‎. ‎If ${T_{j}}$ is a sequence in $L(X,Y)$,‎ ‎the (bounded) multiplier space for the series $sum T_{j}$ is defined to be‎ [ ‎M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}%‎ ‎T_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...

متن کامل

. A P ] 3 O ct 2 00 6 SPECTRAL MULTIPLIERS FOR SCHRÖDINGER OPERATORS : I

Spectral multiplier theorem for differential operators plays a significant role in harmonic analysis and PDEs. It is closely related to the study of the associated function spaces and Littlewood-Paley theory. Let H = −∆ + V be a Schrödinger operator on R, where V is real-valued. Spectral multipliers for H have been considered in [22, 16, 14, 15, 3] and [12] for positive potentials. The case of ...

متن کامل

Spectral Multipliers for Schrödinger Operators with Pöschl-teller Potential

Spectral multiplier theorem for differential operators plays a significant role in harmonic analysis and PDEs. It is closely related to the study of the associated function spaces and Littlewood-Paley theory. Let H = −∆ + V be a Schrödinger operator on R, where V is real-valued. Spectral multipliers for H have been considered in [22, 16, 14, 15, 3] and [12] for positive potentials. The case of ...

متن کامل

New Proof of Hörmander multiplier Theorem on compact manifolds without boundary

On compact manifolds (M, g) without boundary of dimension n ≥ 2, the gradient estimates for unit band spectral projection operators χλ is proved for any second order elliptic differential operators L by maximum principle. A new proof of Hörmander Multiplier Theorem on the eigenfunction expansion of the operator L is given in this setting by using the gradient estimates and the Calderón-Zygmund ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009